

Artificial Intelligence

Lecture 7 - Predicate Calculus

Outline

● Limitations of propositional calculus
● Predicate calculus
● Syntax
● Semantics
● Entailment
● Proof
● Resolution

Limitations of Propositional Calculus

● Propositional calculus allows us to talk about
propositions (simple facts about the world) and
combinations of facts

● We can’t talk about things in terms of their properties or
relationships to other things except in concrete terms

● We can’t express rules or generalisations:
● if the train is late and there are no taxis at the station, John is

late for the meeting
● if the train is late and there are no taxis at the station, anyone

travelling by train will be late for the meeting

(First order) Predicate Calculus

● Predicate calculus provides a richer
representation language

● Objects and properties
● Relationships between objects (including

functions)
● Quantification - ability to refer to all objects, or

to say that there is some object which has a
given property

Syntax

● Logical symbols
● punctuation:

● connectives:

● variables:

 (have a fixed meaning)

“(”, “)”, “.”

¬ (not), (and), (or), → ∧ ∨
(conditional), (universal quantifier), ∀

 (existential quantifier), = (equals)∃

x, y, z, x
1
, y

1
, z

1
, . . .

Syntax

● Non-logical symbols
● function symbols: father, mother, sum, … (sometimes

just f, g, h, …)
● predicate symbols: Man, Woman, Brother, Married, …

(sometimes just P, Q, R …)

● Function and predicate symbols have fixed arity
(i.e., number of argument places, a non-negative
integer), e.g., father has arity 1, sum has arity 2, etc.

● Constants (or names) are function symbols of arity
0, e.g., John, EiffelTower and TipperaryInstitute are
function symbols of arity 0

Atomic Formulas

● Terms
● every variable is a term

● if f is a function symbol of arity n and t
1
, . . ., t

n
 are

terms, then f(t
1
, . . ., t

n
) is a term

● Formulas

● if P is a predicate symbol of arity n and t
1
, . . ., t

n
 are

terms, then P(t
1
, . . ., t

n
) is an atomic formula

● if t
1
 and t

2
 are terms then t

1
 = t

2
 is an atomic formula

Complex Formulas

● If α and β are formulas and x is a variable then

¬α : not α

α ∧ β : α and β

α ∨ β : α or β

α → β : if α then β

∀x.α : for all x, α is true

∃x.α : there exists some x such that α is true

are formulas

Examples

● Basic facts about a domain are usually represented
by atomic sentences or negations of atomic
sentences, e.g., Man(john), Woman(jane)

● We can also express relations between people and
objects in the domain, e.g., Married(john, jane),
Brother(john, william), Owns (william, ford) etc

● We can also express general properties of all objects,
e.g., ∀x.Happy(x) says that “everyone is happy” (or
more precisely that every thing is happy)

● Or of unspecified objects, .e.g., ∃x.¬Happy(x) says
that someone (some thing) is not happy

More Examples

● More complex facts about a domain can be expressed using simple
formulas composed with logical connectives

● Disjunctions, e.g., Loves(jane, john) ∨ Loves(jane, william) says that “Jane
loves John or Jane loves William (or both)”

● Disjointness of predicates, e.g., ∀x.¬(Man(x) ∧ Woman(x)) says the
categories Man and Woman are disjoint

● Subtypes, e.g., ∀x.(Dog(x) → Animal(x)) says that “all dogs are animals”

● Exhaustiveness, e.g., ∀x.(Adult(x) → Man(x) ∨ Woman(x)) says that “an
adult is either a man or a woman (or both unless we specify disjointness)”

● Inverses, e.g., ∀x.(ChildOf(x, y) → ParentOf(y, x)) says that “if x is a child of
y, then y is a parent of x”

Exercise

● Given the predicates Student, Undergraduate, Masters,
Happy, (all of arity 1) the function mother (with arity 1)
and the constant john

● Express the following in predicate calculus
● John is a student
● if John is a student then John is happy
● if John is a student then John’s mother is happy
● some student is happy
● all students are happy
● all undergraduates are students
● all students are either undergraduates or masters but not both

Models

● A model M = <D,I> where D is the domain, a non-empty set of individuals

● I is an interpretation which

● associates constants (0 arity function symbols) with individuals, e.g., the constants “william”,
“bill” and “PresidentClinton” may all map to the same individual in D

● associates a function symbol (arity > 0) with a total function of the same arity from Dn → D,
e.g., “sum” with arity 2 may map to “+”

● associates predicates of arity 1 with sets of individuals with the corresponding property, e.g.,
the interpretation of the predicate “Red” is the set of things in D which are coloured red

● associates predicates of arity > 1 with sets of tuples (pairs, triples etc.) which specify which
tuples of individuals are in the corresponding relation, e.g., the interpretation of the relation
“Married” is the set of pairs of individuals in D who are married

Truth

● We can now specify which formulas are true in a model M - only defined
for sentences, i.e., formulas without free variables

● If α is a variable free atomic formula of predicate calculus α is true if the
appropriate relationships hold in the model

● e.g,. Dog(bestFriend(john)) is true in M if the function corresponding to
bestFriend when applied to the individual corresponding to the constant
john returns an individual which is in the set of dogs

● The truth of complex formulas is defined using the truth functions for the
logical connectives, e.g, α ∧ β is true iff α is true and β is true

● ∀x.α is true if α is true for every element of D, and ∃x.α is true if α is true
for at least one element of D

Entailment

● We can use our definition of truth in a model to define
entailment for predicate calculus

● As with propositional calculus, a set of sentences α
1
,

α
2
, . . . , α

n
entails a sentence β, α

1
, α

2
, . . . , α

n
 |= β, if in all

models where α
1
, α

2
, . . . , α

n
are true, β is also true

● However predicate calculus models are much more
complex objects than the truth assignments that make up
each row in a truth table

● Only feasible way of establishing entailment is to use rules
of inference to prove that β follows from α

1
, α

2
, . . . , α

n

syntactically

Resolution

● We will consider a simplified version of
resolution for predicate calculus sentences
without existentially quantified variables

● All clauses are assumed to be of the form
∀x

1
, . . , x

n
.(l

1
 . . . ∨ ∨ l

m
) where l

1
 . . . l

m
are literals

and x
1
, . . , x

n
are the free variables in l

1
,. . ., l

m

● Reduce to CNF as for propositional calculus
● Apply the resolution rule as for propositional

calculus if the clauses can be unified

Substitution

● A σ substitution is a finite set of pairs {x
1
 = t

1
, . . . , x

n
 =

t
n
} where the x

i
 are distinct variables and t

i
 are arbitrary

terms

● If l
i
 is a literal, then l

i
[σ] is a literal which results from

substituting each x
i
 in l

i
 by t

i

● σ unifies two literals l
i
 and m

j
 if l

i
[σ] = m

j
 [σ] e.g., P(x,

f(x)) and P(y, f(a)) are unified by σ = {x = a, y = a}
● If c is a clause, then c[σ] is the result of applying the

substitution σ to all literals in c

(l
1
 . . . ∨ ∨ l

i
 . . . ∨ ∨ l

k
), (m

1
 . . . ∨ ∨ m

j
 . . . ∨ ∨ m

n
)

(l
1
 . . . ∨ ∨ l

i−1
 ∨ l

i+1
 . . . ∨ ∨ l

k
 ∨ m

1
 . . . ∨ ∨ m

j−1
 ∨ m

j+1
 . . . ∨ ∨ m

n
)[σ]

● where l
i
 and m

j
 are complementary literals, i.e.,

one is the negation of the other

● and σ unifies l
i
 and m

j
, i.e., l

i
[σ] = m

j
 [σ]

General Resolution

General Resolution Example

● From the clauses Man(socrates) and ∀x.(Man(x) →
Mortal(x)) we can derive Mortal(socrates) by resolution

Man(socrates), ∀x.(¬Man(x) ∨ Mortal(x))

Mortal(socrates)

● using the unifier σ = {x = socrates}, so

Mortal(x)[σ] = Mortal(socrates)

Example: Murder Mystery

● d has been murdered
● a, b, and c are suspects (i.e., at most one of a,

b, and c are guilty)
● b claims that he did not know the victim d (i.e, if

b did know d, then b is lying)
● a and c claim that b did know d (i.e., if b did not

know d, then a and c are lying)
● Anyone who lies is guilty
● Prove that b committed the murder (is guilty)

Example: Predicate Calculus

● Express the key facts and relationships in predicate calculus

Guilty(a) ∨ Guilty(b) ∨ Guilty(c)

¬(Guilty(a) ∧ Guilty(b))

¬(Guilty(a) ∧ Guilty(c))

¬(Guilty(b) ∧ Guilty(c))

Knows(b, d) → Lies(b)

¬Knows(b, d) → Lies(a)

¬Knows(b, d) → Lies(c)

∀x.(Lies(x) → Guilty(x))

● Prove that Guilty(b)

Example: Clauses

● Convert to clausal form

1.Guilty(a) ∨ Guilty(b) ∨ Guilty(c)

2.¬Guilty(a) ¬∨ Guilty(b)

3.¬Guilty(a) ¬∨ Guilty(c)

4.¬Guilty(b) ¬∨ Guilty(c)

5.¬Knows(b, d) ∨ Lies(b)

6.Knows(b, d) ∨ Lies(a)

7.Knows(b, d) ∨ Lies(c)

8.∀x.(¬Lies(x) ∨ Guilty(x))

and add the negation of the formula we want to prove:

9.¬Guilty(b)

Example: Proof

1 ∀x.(¬Lies(x) Guilty(x))∨ (8)

2 ¬Guilty(b) (9)

3 ¬Lies(b) 1, 2 by resolution with x = b

4 ¬Knows(b, d) Lies(b)∨ (5)

5 ¬Knows(b, d) 3, 4 by resolution

6 Knows(b, d) Lies(a)∨ (6)

7 Lies(a) 5, 6 by resolution

8 Knows(b, d) Lies(c)∨ (7)

9 Lies(c) 5, 8 by resolution

10 Guilty(a) 1, 7 by resolution with x = a

11 Guilty(c) 1, 9 by resolution with x = c

12 ¬Guilty(a) ¬Guilty(c)∨ (3)

13 ¬Guilty(c) 10, 12 by resolution

14 ∅ 11, 13 by resolution

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

